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a b s t r a c t

An austenitic stainless steel was processed by high-pressure torsion, and formed a hier-

archical nanostructure with ultrafine grains, ultrafine-precipitates, nano-twins and high

densities of dislocations. As a result, the hierarchical nanostructure contributes collec-

tively to the double hardness value of the austenitic stainless steel (514 ± 44 HV) in com-

parison to the coarse-grained counterpart (217 ± 11 HV). Both the nanostructural hierarchy

and high hardness can be maintained at the temperatures up to ~600 �C. Annealing

treatment at temperatures from 400 to 600 �C may induce recovery to the hierarchical

nanostructure, resulting in a reduced microstructural heterogeneity and increased hard-

ness for the high-pressure torsion processed steel.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Austenitic heat resistant stainless steels offer a resistance to

large variation in temperature, thus have wide industrial ap-

plications including pipes, furnaces, heat-exchangers, in-

cinerators and steam turbines [1,2]. Nevertheless, the

comparatively low specific strength puts a limit on the in-

dustrial applications of austenitic stainless steels [3]. Devel-

opment of thermally stable steels with high strength is of

significant importance to both industrial applications and

scientific research.
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Conventional practice for simultaneously improving

strength and thermal resistance requires alloying, nano-

clustering and precipitation to suppress static recrystalliza-

tion and grain growth [4e7]. However, considering the

fundamental physics of materials strengthening, it is the ac-

tivities of defects playing the major role in determining the

strength of materials under service conditions [8]. This idea

shifts our attention to the manipulation of defects by plastic

deformation, in seeking for an austenitic stainless steel with

high strength and high thermal stability.
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Severe plastic deformation (SPD) is capable of introducing

an extremely large amount of defects including dislocations,

grain boundaries (GBs) and twin boundaries (TBs), to signifi-

cantly boost the strength of metallic materials [9,10]. Howev-

er, not all defects are stable at high temperatures, such as

statistical dislocations and high energy GBs [11e13]. Accord-

ing to the classical model of curvature-driven GB migration,

the driving force for GB migration increases with decreasing

grain size [11,14]; Hence, most of the SPD processed materials

with ultrafine grained (UFG) structures are prone to static

recrystallization and grain growth upon annealing. In 2012,

Yan et al. [15] have demonstrated that nano-twin bundles

have superior thermal stability than nano-sized grains in the

same material processed by dynamic plastic deformation. In

2016, Zeng et al. [16] processed an ultrafine grained Cu alloy,

containing a large amount of secondary phase particles, with

an outstanding thermal stability at 1050 �C by a complicated

powder metallurgy process.

Inspired by the early work, we have attempted HPT pro-

cessing to produce an austenitic stainless steel having a hi-

erarchical nanostructure that features ultrafine-precipitates,

ultrafine grains, high densities of nano-twins and high den-

sities of dislocations. The nanostructural hierarchy grants the

steel with a superior hardness and a high thermal stability at

the temperatures up to ~600 �C.
Table 1 e Composition of the as-received austenitic
stainless steel in wt.%.

Cr Ni Cu Mn Mo W Si S C Fe

17.1 12.3 2.1 0.61 0.02 0.01 0.19 0.01 0.1 Base
2. Materials and methods

Themodel material is an austenitic stainless steel supplied by

Baoshan Iron & Steel Co., Ltd. Shanghai, China. The austenitic

stainless steel is commonly used for making incinerators and

steam turbines [1,2]. The as received plates were directly cut

fromboiler tubeswith a final heat treatment at 1000 �C for 10 h

before delivery and a dimension of 37 mm inner diameter and

57 mm outer diameter. The working temperature of boiler

tubes is in a range of 600650 �C. A summary of the composition

of the material is provided in Table 1.

A steel plate was firstly cut into disks with a diameter of

~20 mm and a thickness of ~1.5 mm. The disks were then

ground and sequentially polished to obtain a smooth surface

and a uniform thickness of ~1.2 mm for HPT processing. The

processing was conducted under quasi-constrained condi-

tions [17,18] using an applied pressure of 5.0 GPa, andwith the

disks processed through 10 revolutions. HPT disks were

isochronally annealed for 1 h at temperatures ranging from

400 to 900 �C.
It is known that the shear strain imposed by HPT is a

function of the disk radius. In order to minimize the effect of

strain variation on microstructures, the position of our

investigated sample is about 7 mm away from the center of

the HPT disk. Samples for scanning electronmicroscopy (SEM)

characterization and Vickers hardness tests were mechani-

cally polished using 1200 grit SiC papers, 6 and 1 mm diamond

papers and 0.4 mm colloidal silica suspensions sequentially.

Samples for transmission electron microscopy (TEM) charac-

terization were 3 mm diameter foils prepared by standard

machining and electro-polishing methods. The electrolyte

contains 25% perchloric acid and 75% acetic acid, the opera-

tion voltage is 20 V and the temperature is 20 �C. An
automated Bruker-AXS D8 Advance diffractometer with Cu Ka

radiation source was used for X-ray diffraction (XRD) analysis.

A Carl Zeiss-Auriga SEM was used for electron backscatter

diffraction (EBSD) and surface topography analysis. A FEI-

Tecnai G2-20-S-TWIN microscope equipped with an Oxford

X-MaxN energy dispersive X-ray (EDX) detector, operating at

200 kV, was used for diffraction contrast imaging and EDX

analysis. Vickers hardness tests were conducted on a Shi-

madzu HMV-G hardness tester with a load of 1.961 N and a

holding time of 15 s. The choice of the load for the hardness

test has to guarantee that the shape of the square-pyramid

indent is sharp and clear, and the size of indent is large

enough within a range of several tens micrometer in order to

minimize the measurement error.
3. Results

According to Table 1, the major alloying elements are

17.1 wt.% Cr, 12.3 wt.% Ni and 2.1 wt.% Cu. Both Cr and Ni are

commonly used in making austenitic heat resistant stainless

steel with high corrosion resistance and heat resistance [19].

Addition of Cu in steels can improve the antibacterial property

and corrosion resistance [20]. The solubility of Cu in iron sol-

vent is less than 1.5 wt.% at the temperature below 700 �C [21].

Therefore, the steels with the Cu contents higher than

1.5 wt.% can form Cu-rich precipitates, and thus can possess

precipitation strengthening, even at high service tempera-

tures. In thiswork, the Cu-rich precipitates were formed at the

final heat treatment, at 1000 �C for 10 h before delivery of

boiler tubes. This aging temperature is significantly higher

than the usual aging temperature (<600 �C) of stainless steels.
As a result, the spherical precipitates with an average size of

300 nm embedded in austenite grains are observed, as shown

in Fig. 1. The reader should note that the Cu-rich precipitates

are intermetallic compounds containing Fe, Cu, Ni and some

other elements. The Cu-rich precipitates usually possess a

complex coreeshell structure which changes in shape and

structure with increasing temperature and altered elemental

contents. The reader can refer to literatures for details about

the Cu-rich precipitates in steels [20,22]. According to the EDX

analysis data provided in Table 2, the ultrafine-precipitates

are a Cu-rich phase with the Cu content more than three

times higher than the nominal Cu content of the steel. Both

XRD and EBSD results show only the austenitic phase in the

as-received austenitic stainless steel sample (Fig. 2), indi-

cating that the matrix is of a single austenitic phase and the

volume fraction of the precipitates is low. According to the

EBSD map shown in Fig. 2b, the as-received austenitic stain-

less steel has a coarse-grained structure with an average grain

size of ~23 mm. Annealing twins are randomly observed in the

steel. At least 300 grains have been counted for each statistical
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Fig. 1 e An TEM image showing nano-precipitates (marked by orchid arrows) embedded in an austenite grain.
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analysis. This rule has been applied to both TEM and EBSD

based data analysis throughout this work.

After HPT processing to 10 revolutions, themicrostructures

in the steel were significantly refined, as shown in Fig. 3. Both

nano-twin bundles and ultrafine grains are found in the

austenite. The shape, size and density of the Cu-rich pre-

cipitates are unchanged compared to the as-received sample,

indicating that SPD causes no significant change to the pre-

cipitate particles. XRD analysis found that the dislocation

density at the area of study is as high as 6.27� 1014 m�2 (Table

3). Thus, the HPT steel sample possess a hierarchical nano-

structure that is a mixture of ultrafine-precipitates, ultrafine

grains, high densities of nano-twins and high densities of

dislocations.

After annealing at 500 �C for 1 h, the nanostructure at the

area of study of the HPT disk seems unchanged, as shown in

Fig. 4a, b and c. The ultrafine sub-grains with irregular shapes

and diffuse GBs are still evident in Fig. 4a. A high density of

nano-twins even in four twinning systems [23] can be found in

Fig. 4b. As shown in Fig. 4c, the boundaries of nano-twins are

curved due to severe dislocation-TB intersections [24,25]; A

large number of dislocations associated with local strain field

distortions are evidenced by non-uniform diffraction contrast

in the TEM image. Similar nanostructures are also observed in

the HPT samples annealed at 600 �C, hence the hierarchical

nanostructure processed by HPT is sustainable at the service

temperature below 600 �C. After annealing at 700 �C for 1 h, the

microstructures at the area of study displayed some notice-

able changes. As shown in Fig. 4d, recrystallized grains (one is

labelled RG) containing low densities of dislocations and with
Table 2 e Composition of a typical nano-precipitate
particle in wt.% measured by energy dispersive X-ray
analysis.

Cr Ni Cu Mn Mo W Si S Fe

19.93 6.12 7.12 0.00 0.00 0.00 0.19 14.52 52.31
sharp grain boundaries, are found at the UFG region. Mean-

while, twinned regions still contain high densities of nano-

twins and dislocations. Thus, clear contrast can be seen be-

tween the region of deformation twins (DT) and the region of

recrystallized grains (RG) in Fig. 4e. The excess energy of a TB

is significantly lower than that of a conventional GB, thus

nano-twins have a much better thermal stability than ultra-

fine grains [11,14,15]. This concept is also supported by Fig. 4f,

in which a shear band has recrystallized and surrounding

nano-twins are nearly unchanged. As the annealing temper-

ature increased further to 900 �C, significant recovery and

recrystallisation transformed the nanostructural hierarchy

back to the coarse-grained state with low densities of TBs and

dislocations as shown in Fig. 4g. Fig. 5 shows a typical EBSD

image and statistical grain size distribution of the sample

annealed at 800 �C.
Statistical analysis was conducted based on microstruc-

tural data collected by means of TEM, EBSD and XRD. As

illustrated in Fig. 6a, the average grain size of the austenitic

stainless steel was ~195 nm after HPT processing, and sus-

tained at about 200 nm until the annealing temperature of

600 �C was reached. It is worth noting that the average grain

sizes after annealing at 400, 500 and 600 �C was 250, 201 and

262 nm, respectively. It has been widely reported that HPT

may introduce microstructural heterogeneity [26,27], thus it is

difficult to determine whether the fluctuation in grain sizes

was caused by HPT or by annealing yet at this point.

Notwithstanding, the UFG region showed strong thermal

stability at the annealing temperatures up to 600 �C. In

contrast, nano-twins have better thermal stability than ul-

trafine grain. In fact, the average twin thickness is sustained at

about 60 nm until the annealing temperature of 700 �C was

reached. Once the thermal stability of nano-twins was

breached by the high temperature above 700 �C, thermally

induced de-twinning occurred vigorously to cause significant

increase in twin thickness as indicated by Fig. 6b. Both EBSD

https://doi.org/10.1016/j.jmrt.2021.02.100
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Fig. 2 e (a) An XRD pattern for the as-received austenitic stainless steel; (b) An EBSD map displaying orientations of grains

with the Inverse Pole Figure coloring scheme (the color code is given at the bottom right corner).
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and XRD data were used tomeasure dislocation densities. The

XRD method is [28]:

r¼2√3ðε2Þ1

=

2

dXRDb
(1)

where ε and dXRD is microstrain and grain size which can be

obtained by XRD, respectively, b (0.254 nm) is themagnitude of

Burgers vector. While the EBSD method is used according to

the equation [29]:

r¼2qKAM
xb

(2)

where r is the dislocation density, qKAM is the kernel average

misorientation, x is unit length which is equal to twice the

step size (70 nm for samples annealed below 700 �C and

100 nm for samples annealed above 700 �C) used in EBSD

acquisition. The results in Fig. 6c show that dislocation den-

sities gradually decrease with increasing annealing
Fig. 3 e The typical microstructure observed at the area of study o

the twinned region and the UFG region, and are given as insets o

marked by orchid arrows.
temperature, but significant recovery occurred in the tem-

perature range between 600 and 800 �C when the dislocation

density (XRD data) dropped sharply from 3.36 � 1014 to

3.0 � 1012 m�2. (Note: the dislocation densities measured by

XRD and EBSD are sensitive to different types of instrumental

and analytical errors, therefore the trend of dislocation den-

sity evolution is more meaningful than the actual numbers

shown in Fig. 6c).

Microhardness tests were carried out to investigate the

thermal stability of the HPT steel with hierarchical nano-

structures. In-depth analysis based on all available hardness

and microstructural data reveals that the microstructural

evolution with the increasing annealing temperature can be

divided into four stages as shown in Fig. 7a. At stage 1 (blue

color zone in Fig. 7a), hardness of the HPT steel increases

slightly with increasing annealing temperature up to 500 �C.
The hardness of HPT steel was 514 HV with a standard devi-

ation of 44 HV. After annealing at 500 �C for 1 h, the hardness
n the HPT steel disk; Diffraction patterns are obtained from

n the right-hand side of this figure; Cu-rich precipitates are

https://doi.org/10.1016/j.jmrt.2021.02.100
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Table 3 eHardness andmicrostructural parametersmeasured at various annealing temperatures. D¡ grain size, T¡ twin
thickness, rXRD ¡ XRD measured dislocation density, rEBSD ¡ EBSD measured dislocation density.

Temperature (�C) 20, HPT 400 500 600 700 800 900

Hardness (HV) 514 ± 44 530 ± 32 534 ± 27 520 ± 27 387 ± 20 281 ± 21 215 ± 10

D (nm) 195 ± 90 250 ± 110 201 ± 90 262 ± 110 787 ± 340 3399 ± 840 3792 ± 850

T (nm) 53 ± 23 48 ± 26 48 ± 31 64 ± 35 60 ± 27 204 ± 76 447 ± 123

rXRD (�‘1014 m�2) 6.27 4.41 4.01 3.36 0.81 0.03 0.11

rEBSD (�1014 m�2) 35.8 24.4 23.8 13.0 3.56 1.99 2.07
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of the HPT steel increased to 534 HVwith a standard deviation

of 27 HV. Moderate increase in hardness indicates that

annealing induced hardening occurred [30]; Reduced standard

deviation of hardness values indicates that microstructural

heterogeneity is reduced. Although TEM images show negli-

gible change in microstructure at the stage 1, moderate

decline in dislocation density (Fig. 6c and Table 3) indicates

that recovery has occurred during stage 1 annealing. Severely

deformed materials are prone to dislocation recovery due to

excess amount of dislocations and boundaries [13,30]. For

nanostructured materials, recovery will significantly reduce

the number of dislocation sources, thus higher yield stress is

realized for activating new dislocation sources upon straining

[30]. One may argue that, the microstructural changes by re-

covery are subtle and occur on a very small scale; In addition,

austenitic stainless steels with low stacking fault energies

(SFEs) are less prone to recovery than high SFE materials [13].

In the HPT steel, dislocation density is very high

(6.27 � 1014 m�2 measured by XRD and 3.6 � 1015 m�2

measured by EBSD) and Cu-rich ultrafine-precipitates are at

present. These two microstructural features are the major

driving kinetics for dislocation recovery. Thus, noticeable re-

covery could occur before recrystallisation, leading to the

moderate increase in hardness during annealing at the stage

1. Moreover, the decrease in microstructural heterogeneity

(indicated by reduced standard deviation in hardness) is

another strong evidence for static recovery. The grains with

higher dislocation densities would undergo more pronounced
Fig. 4 e TEM images showing typical microstructures of the HPT

UFG structure, (b) deformation twins in multiple systems, (c) m

recrystallized grain (RG), (e) recrystallized grains and deformati

recrystallized shear band, and (g) recrystallized coarse grains.
recovery. As a result, the difference in dislocation density

among most of the grains are reduced, leading to a reduced

microstructural heterogeneity.

At stage 2 (aqua color zone in Fig. 7a), hardness of the HPT

steel decreases sharply with increasing annealing tempera-

ture from 600 to 700 �C. Grain growth in the UFG region and

overall decrease in dislocation density are the major contrib-

utors to the hardness drop. In contrast, the average twin

thickness is nearly unchanged at this stage, therefore the

hardness is still significantly higher than the coarse-grained

counterpart. At stage 3 (green color zone in Fig. 7a), hard-

ness of the HPT steel continues to decrease sharply with

increasing annealing temperature from 700 to 800 �C. At this
stage, the thermal stability of the HPT steel cannot maintain.

Significant recovery and recrystallisation occurred to increase

the grain sizes back to the coarse-grained regime, to decrease

both dislocation density and twin density, and to increase the

average twin thickness to ~204 nm. At stage 4 (white color

zone in Fig. 7a), the microstructure gradually evolves to an

equilibrium state that is similar to the as-received austenitic

stainless steel. As a result, hardness of the HPT steel annealed

at 900 �C is comparable to the as-received sample.
4. Discussion

The hardness and the thermal stability of the HPT steel are

compared to other nanostructured steels in Fig. 7b [5,31e41].
steel sample annealed for 1 h, at 500 �C, 700 �C, 900 �C: (a)
agnified image of deformation twins, (d) a partially

on twins (DT), (f) a high density of nano-twins with a

https://doi.org/10.1016/j.jmrt.2021.02.100
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Fig. 5 e EBSD image and statistical grain size distribution of the sample annealed at 800 �C.
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Among conventional alloys, steels show superior hardness

and specific strength. In current work, hardness of the HPT

steel is significantly higher than other types of steels when its

hierarchical nanostructure is sustained below 600 �C. This is

because among all UFG steels compared in Fig. 7b, HPT steel

has the smallest average grain size and highest twin density,

and stable Cu-rich precipitates. However, smaller grain size
Fig. 6 e Charts illustrating (a) average grain size vs. temperatur

density vs. temperature.
may lead to an issue of increased tendency for grain growth

during annealing. The grain size effect on the kinetics of sub-

grain growth is described by the Arrhenius relationship

[13,38]:

dn �dn
0 ¼ tK0 exp

�
� Q
RT

�
(3)
e, (b) twin thickness vs. temperature, and (c) dislocation

https://doi.org/10.1016/j.jmrt.2021.02.100
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Fig. 7 e (a) Hardness evolution with respect to the annealing temperature for the HPT steel; (b) Comparison of hardness

evolutions with respect to varying annealing temperatures for NG and UFG materials.
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where d is the grain size after grain growth, d0 is the grain size

prior to grain growth, n is the grain growth exponent, t is the

annealing time, K0 is a constant; Q is the activation energy for

grain growth, R is the gas constant, and T is the annealing

temperature. The value of n is affected by composition and

temperature. According to the literature [13], n for an

austenitic stainless steel is in the range between ~4.54 and

~7.14. If amediumvalue of n¼ ~5.55 is used for the estimation,

by plotting ln (dn � dn
0) vs. 1/T, an activation energy of

Q ¼ 461.8 kJ/mol for grain growth can be extracted from the

slope. All other steels surveyed in Fig. 7b [5,37e39,41] have

activation energies for grain growth in the range between 207

and 475 kJ/mol. The activation energy for grain growth in the

HPT steel is at the upper bond in comparison to those

commonly studied steels. Therefore, the thermally stable ul-

trafine grains are the major contributor to the overall thermal

stability of the HPT steel.

In fact, a comparison of the turning points on the hardness

vs. temperature curves (Fig. 7b) provides another direct evi-

dence of the high thermal stability of the HPT steel. The term

“turning point” used here is the annealing onset temperature

at which hardness begins to decline. For example, the turning

point for the HPT steel is at 590 �C; To the right of the turning

point, a sharp drop in the hardness of the HPT steel is realized.

A vertical dashed line is drawn across the turning point of the

HPT steel at 590 �C as a reference line in Fig. 7b. In contrast, for

the IF steel [36], T91 steel [37], FeCrNi stainless steel [38] and

low carbon steel [35], the turning points are all clearly (located

to the left of the dashed line) below 600 �C. Thus, it can be

concluded that the HPT steel with a hierarchical nano-

structure is thermally more stable than those UFG steels.

However, the turning points of the 304 L [39,41] and 316

stainless steel [5] are approximately (located to the right of the

dashed line) at 700 �C which is higher than the HPT steel. The

better thermal stability of 304 L is attributed to a larger average

grain size of 650 nm and higher content of Mo and V [39,41].

The high thermal stability of 316 stainless steel is attributed to

the coarse-grained structure and stable nano-twins.

The strength and thermal stability of a nanostructured

material are determined by the combined effect of grain size,
GBs, nano-twins, alloying elements, dislocation density, pre-

cipitates, texture, SFE and microstructural heterogeneity. The

high hardness and high thermal stability of the HPT steel

revealed by Fig. 7b suggests that the nanostructural hierarchy

shown in Fig. 3 is effective in improvingmaterials mechanical

properties. However, in-depth analysis based on current

result and literature surveys suggests that further improve-

ments to materials properties are still possible. For example,

nano-grains in a Cu-12at%Al alloy can be stabilized by the

presence of nanoscale CueAl intermetallic precipitates at

900 �C [31]. For another example, nano-twins show stability at

800 �C in coarse grained 316 stainless steel [5] and in UFG Cu

[42]. Thus, our future work will focus on manipulating

intrinsic properties and processing conditions to promote

nano-twins and nano-precipitates to further improve the

strength and thermal stabilities of steels.
5. Conclusions

In conclusion, an austenitic stainless steel with hierarchical

nanostructure featuring Cu-rich precipitates, ultrafine grains,

high densities of nano-twins and high densities of disloca-

tions, has been processed by HPT. The HPT steel possesses a

high hardness which is sustainable above 500 HV after

annealing at 600 �C for 1 h. Annealing at 500 �C for 1 h can

moderately increase the hardness and reduce the micro-

structural heterogeneity of the HPT steel, indicating that

moderate recovery is helpful for sustaining the high hardness

of a nanostructured steel processed by SPD.
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